SOME OBSERVATIONS ON PENTACARBONYLMANGANESE-SUBSTITUTED TIN HYDRIDES

STEPHEN P. FOSTER and KENNETH M. MACKAY *

Department of Chemistry, University of Waikato, Private Bag, Hamilton (New Zealand) (Received December 17th, 1982)

Summary

The substituted tin hydrides, $(CO)_5MnSnH_3$, $(CO)_5MnSnMeH_2$, and $(CO)_5MnSnMe_2H$, have been synthesised and characterised with reasonable certainty by IR, MS and ¹H NMR spectroscopy, despite some difficulties with decomposition. $(CO)_5MnSnH_3$ is the least stable, steadily eliminating HMn(CO)₅ at room temperature.

Introduction

Simple tin hydrides are thermally unstable and relatively little explored. SnH_4 decomposes slowly at room temperature, while Sn_2H_6 does not survive above $-112^{\circ}C$ [1]. Stability increases markedly with alkyl substitution: thus Me_2SnH_2 survives for a few weeks while R_3SnH species are stable indefinitely at room temperature. In contrast, electronegative substituents greatly decrease the lifetimes, with $SnClH_3$ decomposing at $-70^{\circ}C$ [2].

Only a few transition metal derivatives of the stannanes have been reported. Monohydrides of the types M_3 SnH and MPh₂SnH (M = Mn(CO)₅, Re(CO)₅ [3], also [R₃P(CO)₃Co]₃SnH [4]) parallel the trialkyls R₃SnH, but even the dihydrides M_2 SnH₂ survive to over 100°C [3]. Perhaps most striking of all is the distannane [{(CO)₅Mn}₂SnHSnH{Mn(CO)₅}₂], which only starts to decompose about 150°C [5].

The stability of the monohydrides and the distannane probably results, in part, from the lack of the intramolecular H_2 -elimination route, but there is an implication of additional stabilisation by the $Mn(CO)_5$ and similar groups. This was also suggested by the properties of metal carbonyl substituted polygermanes [6], and can be rationalised on steric or electronic grounds.

In this work we report efforts to make $(CO)_5MnSnR_3$ species, especially the polyhydrides, where $R_3Sn = H_3Sn$, H_2SnMe or $HSnMe_2$. It was also of interest to see if the halostannanes were sufficiently stable to be used in the convenient

synthesis involving alkali halide elimination (eq. 1).

$$R_{n}SnH_{4-n} \rightarrow [R_{n}SnClH_{3-n}] \xrightarrow{\text{NaMn(CO)}_{5}} (CO)_{5}MnSnR_{n}H_{3-n} + NaCl$$
(1)

Results

TABLE 1

The spectroscopic data (Tables 1, 2, 3) provide clear evidence that the substituted stannanes (CO)₅MnSnH₃, (CO)₅MnSnMeH₂ and (CO)₅MnSnMe₂H were formed according to eq. 1. There were, however, difficulties in each case. (CO)₅MnSnH₃ evolved HMn(CO)₅ and deposited a red solid steadily on handling. The infrared spectrum was determined by difference from that of HMn(CO)₅, and no conclusion could be drawn from the intensities of (H)Mn(CO)_n⁺ ions in the mass spectrum.

 $(CO)_5MnSnMeH_2$ was obtained as a clear liquid whose colour and vapour pressure of 1-2 mm did not change over periods of an hour or so. Its ¹H NMR spectrum was clean, with no sign of HMn(CO)₅, but the mass spectrum did suggest enhanced formation of the manganese hydride in contact with the metals of the ion source. Ions containing both Sn and Mn carried only 36% of the total ion current, in contrast with the observation of 75% for (CO)₅MnGeMeH₂ [7].

The mass spectrum of $(CO)_5$ MnSnMe₂H showed no such indication of HMn(CO)₅ elimination or enhanced Mn-Sn cleavage as ions containing both metals carried 56% of the total ion current, comparable with the 52% found [8] for $(CO)_5$ MnGeMe₂H and suggesting the same pattern as found for the trimethyls, $(CO)_5$ MnMMe₃ (52% for M = Ge, 59% for M = Sn [9]). However, the ¹H NMR spectrum showed pronounced contamination by $(CO)_5$ MnSnMe₃. This probably arose from a minor contamination of Me₃SnH in the starting material which was enhanced in the preparation (especially as Me₃SnCl is more stable than Me₂SnClH). Since $(CO)_5$ MnSnMe₃ is less volatile than (CO)₅MnSnMe₂H, its ions appeared only weakly in the mass spectrum and it did not complicate the infrared spectrum measured in the gas phase.

With these problems in mind, the spectroscopic properties may be reviewed. The ¹H NMR spectra are shown in Table 1, along with data for various analogues

		MH	MCH ₃	Solven
(CO)₅MnMH₃	M = Si[10]	6.41		neat
	$M = Ge^{a}$	6.72		C ₆ H ₆
	M = Sn	6.53		C ₆ H ₆
(CO) ₅ MnMMeH ₂	M = Ge [7]	6.30	9.33	SiCl
	M = Sn	5.75	9.36	neat
(CO) ₅ MnMMe ₂ H	M = Ge ^b	5.60	8.94	neat
	M – Sn	5.40	9.07	neat
(CO) ₅ MnMMe ₃	M = Si [12]		9.51	C_6H_{12}
	M = Ge[13]		9.38	CDCi,
	M = Sn [14]		9.53	neat

CHEMICAL SHIFTS (τ) OF GROUP IV PENTACARBONYLMANGANESE SPECIES

^a Also 6.37 τ in SiCl₄ [8,11]. ^b Also 5.8 and 9.3 τ in SiCl₄[8].

[10-14]. Although obscured somewhat by solvent shifts, the Sn H chemical shifts lie consistently below GeH, while SnCH₃ lies a little to high field of GeCH₃. The expected low field shifts of MH on successive methyl substitution form a consistent pattern for M = Sn and Ge and help to support the assignment of the singlet of (CO)₅MnSnH₃. For the methyl and dimethyl species, the identification is further confirmed by the multiplicities, relative intensities, and J values.

The gas phase vibrational spectra are recorded in Table 2. There is a close resemblance in position, relative intensity, and band envelope shape, with the spectra of the corresponding germanes. The number of bands is in accord with

TABLE 2

```
INFRARED GAS PHASE SPECTRA OF (CO), MnMR, SPECIES (cm<sup>-1</sup>)
```

(s, strong; m, medium; w, weak; sh, shoulder; v, very; br, broad)

R ₃ M					
SnH ₃ "	GeH ₃ [11]	SnMeH ₂ ^b	GeMeH₂ [7]	SnMe ₂ H ^b	Assignment
		2994vw	2963w	2997vw	ν_{a1} (CH ₁)
		2920vw	2926w 2877w	2916vw	ν, (CH ₃)
2109R	2117]	2104			
2106Q ms	2114 m	2101 vs	2107m	2094vs	$\nu(CO)_{ax}$
2103P	2111)	2098 J			$(a_1 \text{ or } a')$
2021R	2022	2029			
2018Q vvs 2015P	2019 vvs 2016	2026 s 2023	2029vs	2024vs	$\nu(CO)_{eq}(a_1 \text{ or } a')$
		2012vvs	2018vs	2006vvs	$\mathcal{V}(CO)_{eq}(e)$
1983w 1973 ?vw	1981m 1975	1976mw	1985w	1970m	₽(¹³ CO)
1865br,w		1845vw			$\nu_{\rm m}$ (SnH _x)
1846R)		1828]		1810]	
1833Q } m		1825 s		1808 ms	P_{s} (SnH _x)
1840P)		1822)		1805	
		1346vw	1460w		
			1080w		δ(CH ₃)
			1030w		
		768	877w	867w	o(CH_)
		766 ∫***		766ms	p(CI13)
696R	821	718			
694Q mw	818 s	715 ∤m	838s	728w	$\delta_{s}(MH_{x})$
692P)	815 J	712)			
667sh	685w	000 Vs	670sh	669 vs	δ(MnCO)
65/VS	66 <i>3</i> VS	658 J	66Us	657)	
638?W		676	609w,br		(1. 1. 1. 1.
		5/5ms	695sh	(17)	$\rho(MH_x)$
		51/m	383m	$507 \frac{557}{507}$ ms	ν(MC)
474w	474m	476m	482m	477m	⊭(MnC)

^a Contaminated with (CO)₅MnH, see Experimental. ^b Low vapour pressure-weaker methyl modes not seen.

TABLE 3

Compound	Ions containing	Relative intensities for n						
		5	4	3	2	1	0	
(CO) ₅ MnSnH ₃	$(CO)_{n}$ MnSnH _x ^{+ a}	w	m	w	vw	ь	s	
$(CO)_5$ MnSnMeH ₂	(CO), MnSnMeH, + c	13	17	66	36	14	34	
	$(CO)_n MnSnH_x^+$	30	33	29	21	21	26	
(CO) ₅ MnSnMe ₂ H	$(CO)_n MnSnMe_2 H_z^{+ d}$	50	42	34	32	12	24	
	(CO), MnSnMeH, +	1	1	2	5	36	36	

FRAGMENT IONS CONTAINING (Sn + Mn) OR Sn FOUND IN THE MASS SPECTRA OF $(CO)_5 Mn Sn R_3$ SPECIES (m/e)

^a Most abundant ion has x = 3 for n = 5, 4 and x = 1 for others. ^b Weak spectrum obscured by background in this region. ^c Base peak Me₂SnH_x⁺: MeSnH_x⁺ = 93, Me₃SnH_x⁺ = 66, SnH_x⁺ = 83. ^d Base peak Me₃SnH_x⁺: MnSnH_x⁺ = 30, Me₂SnH_x⁺ = 15, MeSnH_x⁺ = 70, SnH_x⁺ = 14.

expectations based on local symmetry (e.g., three CO stretches for the $2a_1 + e$ infrared-active species expected for the C_{4v} unit). For all these molecules, the symmetric modes show an unsymmetric type A contour with pronounced Q branch and relatively weak P branch.

The assignments require few comments. Unlike GeH stretches, the SnH modes are well clear of the carbonyl region and decrease in frequency with increasing methyl substitution. The strong a_1 and e carbonyl stretches overlap in both (CO)₅MnMH₃ species, but are separated for the methyl and dimethyl derivatives. For the MMeH₂ species, it is likely that the MH₂ bend and wag overlap at 715 (M = Sn) or 838 cm⁻¹ (M = Ge) with the rock much lower at 575 (Sn) or 695 cm⁻¹ (Ge): the two upper modes are close together at 726 (bend) and 712 cm⁻¹ (wag) for Me₂SnH₂ [15].

The tin-containing ions found in the mass spectra are summarised in Table 3. Although Sn-Mn cleavage undoubtedly occurs, no weight can be placed on the data for $(H)Mn(CO)_x^+$ species except possibly in the case of $(CO)_5MnSnMe_2H$. Here the observed species were limited to $HMn(CO)_4^+$ (30) and $Mn(CO)_x^+$ for x = 4 (10), 3 (5), 2 (4) and 1 (5) where the intensities are in brackets. This pattern is similar to that seen for the germanes. For all three molecules, all members of the SnMn $(CO)_x^+$ series are found and loss of substituents on the Sn is most prominent after loss of one or two CO units. Methyl transfer between Sn atoms is consistent with observations on other systems [9].

The reaction with excess CCl_4 followed the same path (eq. 2) as observed [7] for

$$(CO)_{5}MnSnMeH_{2} + CCl_{4} \rightarrow (CO)_{5}MnSnMeCl_{2}$$
(2)

the germanium analogue with CHCl₃ as the probable fate of the CCl₄.

Discussion

Although complete certainty is precluded by the facile rearrangements, there seems adequate evidence for the existence of $(CO)_5$ MnSnH₃, $(CO)_5$ MnSnMeH₂ and $(CO)_5$ MnSnMe₂H. This adds two more members to the short list of tin polyhy-

drides. Since decomposition to tin was not observed, these species are more stable than stannanes, but the presence of the $Mn(CO)_5$ unit facilitates an alternative reaction involving $HMn(CO)_5$ elimination, especially for $(CO)_5MnSnH_3$. The red solid decomposition product requires further study and is reminiscent of the species formed, at a high temperature, in the course of the pyrolysis of $(CO)_5MnSiH_3$ [10].

Thus, while the pentacarbonylmanganese unit may stabilise the SnH_x unit towards H_2 elimination, paralleling the observations on substituted di- and tri-germanes, these pentacarbonylmanganese substituted stannyls show alternative reactions which would appear to reduce their general utility for studying Sn-H species.

While the synthesis via the chlorostannanes worked, their extreme instability does outweigh the other advantages of this synthesis and further progress will require an alternative route, perhaps via Sn-N species.

Experimental

General. IR spectra were measured on gas samples with a Perkin-Elmer 180 spectrometer, ¹H NMR spectra on a JEOL C-60HL machine, and mass spectra on a Varian CH5 instrument.

The stannanes were prepared by $LiAlH_4$ reduction of the chlorides and characterised spectroscopically. All compounds were manipulated under vacuum.

Preparation. In a typical run, MeSnH₃ (163 mg, 1.19 mmol) was allowed to react with dry HCl (35 mg, 0.96 mmol) at -70° C until H₂ evolution ceased after 11/2 h. Unreacted stannane was removed. Mn₂(CO)₁₀ (388 mg, 0.995 mmol) was reduced with excess 1% sodium amalgam in dry ether. The green solution was isolated from the amalgam, the chlorostannane condensed in, and the mixture allowed to warm to ambient temperature. The colour became pale orange and NaCl deposited. The volatile products were fractionated and a very pale yellow liquid was held at -45° C. This showed an envelope in the mass spectrum at m/e = 326-336 corresponding to $C_6H_5O_5MnSn$ with the appropriate intensity pattern for the tin isotopes. The ¹H NMR spectrum of the liquid with 10% TMS showed a quartet at 5.75 ± 0.03 τ and a triplet at 9.36 ± 0.03 τ with J 3.8 ± 0.2 Hz and intensity ratio 2/3. The fragment ions in the mass spectrum (Table 3) and the infrared spectrum (Table 2) confirm the species as pentacarbonyl(methylstannyl)manganese, (CO)₅MnSnMeH₂, yield 17 mg (0.05 mmol, 5.3% based on HCl). Further runs also yielded ca. 6%.

Similar preparations using Me₂SnH₂ gave (CO)₅MnSnMe₂H as a white solid freed, with some difficulty, from (CO)₅MnH at -63° C. The ¹H NMR spectrum showed signals at 5.40 τ (septet intensity 0.9) and 9.07 τ (doublet intensity 6.0) with J 3.2 Hz, contaminated by a species with a singlet at 9.53 τ attributed to (CO)₅MnSnMe₃. The mass spectrum of the head fraction showed an ion family at m/e = 341-50 of appropriate intensity pattern for C₇H₇O₅MnSn accompanied by the much weaker (14% relative intensity) parent ion of (CO)₅MnSnMe₃. These properties, with the details shown in Tables 1 to 3, support the attribution as pentacarbonyl(dimethylstannyl)manganese, (CO)₅MnSnMe₂H.

When SnH_4 was used, the -45°C fraction was briefly clear, but readily deposited a red solid while the proportion of $(\text{CO})_5$ MnH increased. In addition to intense ions of the $\text{HMn}(\text{CO})_x^+$ and $\text{Mn}(\text{CO})_x^+$ families, a weak family was seen at m/e =311-322 corresponding to $C_5\text{H}_3\text{O}_5$ MnSn (strongest m/e = 318 matching $(\text{CO})_5\text{Mn}^{120}\text{SnH}_3^+$) together with the fragments listed in Table 3. It was only possible to procure a dilute solution in C₆H₆ for ¹H NMR observation. This showed a singlet at $6.53 \pm 0.02 \tau$, but Sn satellites could not be confirmed. This signal had disappeared after 10 h, when the clear solution had turned dark red. Table 2 lists the infrared absorptions which remained after subtraction of bands at (cm⁻¹) 2124w, 2095sh, 2048sh, 2032, 2028, 2023vvs, [2015s], 1993ms, 1936w, 1784m, 731s, 718w, 670w, 663s, [657vs], 612s and 462m attributed to (CO)₅MnH. Thus, the product is suggested to be pentacarbonyl(stannyl)manganese, (CO)₅MnSnH₃.

Reaction with CCl_4 . (CO)₅MnSnMeH₂(40 mg, 0.12 mmol) was condensed into excess CCl₄ (ca 1 mmol). As the mixture warmed slowly to room temperature, the clear solution turned pale yellow. Volatiles were pumped away to leave (CO)₅MnSnMeCl₂(51 mg, 0.13 mmol, $\approx 100\%$) identified spectroscopically [16].

Acknowledgements

We thank the N.Z.U.G.C. for grants to purchase the spectrometers used in this work, and Dr. Pat Holland, Ruakura Agricultural Research Centre, for use of the mass spectrometer.

References

- 1 W.L. Jolly, Angew. Chemie., 72 (1960) 268.
- 2 E. Amberger, Angew. Chemie., 72 (1960) 78.
- 3 J.P. Collman, J.K. Hoyano and D.W. Murphy, J. Amer. Chem. Soc., 95 (1973) 3424.
- 4 P. Hackett and A.R. Manning, J. Organometal. Chem., 66 (1974) C17.
- 5 K.D. Bos, E.J. Bulten, J.G. Noltes and A.L. Spek, J. Organometal. Chem., 92 (1975) 33.
- 6 F.S. Wong and K.M. Mackay, J. Chem. Research., (1980) S109, M1761; Inorg. Chim. Acta Letters, 32 (1979) L21.
- 7 B.W.L. Graham, K.M. Mackay and S.R. Stobart, J. Chem. Soc. Dalton Trans., (1975) 475.
- 8 R.F. Gerlach, M.Sc. Thesis, University of Waikato, 1976.
- 9 R.A. Burnham and S.R. Stobart, J. Chem. Soc. Dalton Trans., (1973) 1269.
- 10 B.J. Aylett and J.M. Campbell, J. Chem. Soc. A., (1969) 1916.
- 11 R.D. George, K.M. Mackay and S.R. Stobart, J. Chem. Soc. Dalton Trans., (1972) 1505.
- 12 E.A.V. Ebsworth, S.G., Frankiss and A.G. Robiette, J. Mol. Spec., 12 (1964) 299.
- 13 H.C. Clark, J.D. Cotton and J.H. Tsai, Inorg. Chem., 5 (1966) 1582.
- 14 R.E.J. Bichler, M.R. Booth, H.C. Clark and B.K. Hunter, Inorg. Synth., 12 (1970) 61.
- 15 C.R. Dillard and L. May, J. Mol. Spec., 14 (1964) 250.
- 16 N.A.D. Carey and H.C. Clark, Inorg. Chem., 7 (1968) 94.